

Cambridge IGCSE[™](9–1)

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0971/32

Paper 3 Theory (Core)

October/November 2023

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

[Total: 6]

1 A list of compounds is shown.

ammonia
carbon dioxide
carbon monoxide
cobalt(II) chloride
ethane
ethene
glucose
methane
potassium sulfate
sodium phosphate
sulfur dioxide

Answer the following questions using only the compounds from the list. Each compound may be used once, more than once or not at all.

Give the name of the compound that:

(a)	is an unsaturated hydrocarbon	
		[1]
(b)	leads to the deoxygenation of water in rivers	
		[1]
(c)	is a gas which turns damp red litmus paper blue	
		[1]
(d)	is the main constituent of natural gas	
		[1]
(e)	is a product of photosynthesis	
		[1]
(f)	is a compound of a transition element.	
		[1]

[2]

2	Petroleum	is	а	mixture	of	hydrocarbons.
---	-----------	----	---	---------	----	---------------

(a)	Describe two characteristics of a mixture.							
	1							
	2							

(b) Fig. 2.1 shows a fractionating column for separating petroleum into different hydrocarbon fractions.

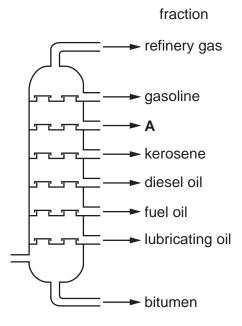


Fig. 2.1

- (i) On Fig. 2.1, draw an **X** inside the column to show where the hydrocarbon with the lowest volatility collects. [1]
- (ii) Name the fraction labelled A in Fig. 2.1.

r	4.1
	11

- (iii) State the name of the fraction which has hydrocarbons with the longest chain length.
 -[1]
- (iv) State one use of the fuel oil fraction.

[1]
 Γ.1

[Total: 6]

3 (a) Table 3.1 shows the average concentrations, in ng/1000 cm³, of air pollutants in four different years.

Table 3.1

	concentration of air pollutant in ng/1000 cm ³							
year	carbon monoxide	hydrocarbons	oxides of nitrogen	particulates	sulfur dioxide			
2019	2.5	12.0	19.6	28.0	30.0			
2020	2.0	13.5	21.8	30.1	21.7			
2021	1.8	14.8	18.5	27.5	23.8			
2022	1.6	16.0	22.7	26.2	25.0			

(1)	Name the oxide pollutant that has the highest concentration in 2021.
	[1]
(ii)	Name the pollutant that shows a continuous decrease in concentration from 2019 to 2022.
	[1]
(iii)	Calculate the average mass, in ng, of particulates in a 250 cm³ sample of polluted air in 2019.
	mana na [41
	mass = ng [1]
(b) (i)	State one adverse effect of particulates on health.
	[1]
(ii)	Particulates are formed by the incomplete combustion of hydrocarbons.
	State the meaning of the term incomplete combustion.
	[1]

[Total: 12]

(c)	(i)	Oxides of nitrogen contribute to ac	cid rain.				
		Choose from the list the pH value for an acidic solution.					
		Draw a circle around your chosen	answer.				
		pH5 pH7	pH9	pH13	[1]		
	(ii)	Complete the sentence about rem two words from the list.	oving oxides of nitro	ogen from car exhausts by choos	ing		
		agent catalyt	ic compound	converter			
		distillation filter	oxidising	pump			
		The emission of oxides of nitroger	n from car exhausts	is reduced by using a			
					[1]		
	(iii)	Oxides of nitrogen can be formed by the action of bacteria on nitrates.					
		Name the aqueous solution and the metal used in the test for nitrate ions.					
		aqueous solution					
		metal					
					[2]		
(d)	Nitr	rogen dioxide decomposes when he	eated. Nitric oxide a	nd oxygen are produced.			
	(i)	Complete the symbol equation for	this reaction.				
		NO ₂ =	≥ 2NO +		[2]		
	(ii)	State the meaning of the symbol =	<u>⇒</u> .				
					[1]		

[4]

4	Tin	is a solid at room temperature.	
	(a)	State two general properties of a solid.	
		1	
		2	
			[2]
	(b)	Fig. 4.1 shows the physical states of tin.	
		solid tin tin gas	
		Fig. 4.1	
		Name the changes of physical states A and B .	
		A	
		В	
			[2]
	(c)	Describe solid and liquid tin in terms of the separation and motion of the particles.	
		solid tin	
		separation	
		motion	
		liquid tin	
		separation	
		ooparation	
		motion	
		1110tiOtt	

(d)	A sealed gas syringe contains 80 cm ³ of carbon dioxide gas.
	State how decreasing the temperature affects the volume of carbon dioxide gas in the gas syringe when the pressure remains constant.
	[1]
	[Total: 9]

- 5 This question is about metals.
 - (a) Table 5.1 shows some properties of some Group I metals.

Table 5.1

metal	melting point in °C	boiling point in °C	atomic volume in cm³/mol	observations on reaction with water
lithium	181	1342	12.9	
sodium	98		23.7	bubbles form rapidly but no flame
potassium	63	760	45.4	bubbles form rapidly and flame seen
rubidium	39	686		explodes

Use the information in Table 5.1 to predict:

	(i)	the boiling point of sodium[1]
	(ii)	the atomic volume of rubidium[1]
	(iii)	the observations when lithium reacts with water
		[1]
	(iv)	the physical state of lithium at 1300 °C. Give a reason for your answer.
		physical state
		reason
		[2]
(b)	Iron	is extracted in a blast furnace by reduction of iron(III) oxide, Fe ₂ O ₃ , with carbon monoxide.
		$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
	(i)	Explain how this equation shows that iron(III) oxide is reduced.

(ii)	Choose the phrase which describes the meaning of (III) in iron(III) oxide.													
	Tick (✓) one box.													
	the number of oxygen atoms in iron(III) oxide													
	the oxidation number of iron in iron(III) oxide													
	the number of CO molecules which react with iron(III) oxide													
	the number of electrons in one atom of iron	[1]												
(iii)	Calcium carbonate is added to the blast furnace.													
	The calcium carbonate undergoes thermal decomposition.													
	Complete the word equation for the thermal decomposition of calcium carbonate.													
	calcium →													
		[2]												
(c) Sta	ainless steel is an alloy.													
(i)	Choose the diagram, A , B , C or D , in Fig. 5.1 that best shows the structure of an alloy.													
(1)	Choose the diagram, A, B, C of B, in Fig. 5.1 that best shows the structure of an alloy.													
	A B C D													
	Fig. 5.1													
	diagram	[1]												
(ii)	Give one reason for using stainless steel instead of pure iron for cutlery.													
		[1]												

(d) Table 5.2 gives the observations when four different metals react with dilute hydrochloric acid.

Table 5.2

metal	observations
iron	bubbles form slowly
mercury	no bubbles seen
strontium	bubbles form very quickly
tin	bubbles form very slowly

Put the four metals in order of their reactivity.
Put the least reactive metal first.

least reactive —		-	most reactive

[2]

[Total: 13]

- 6 A student investigates the reaction of large pieces of magnesium with dilute hydrochloric acid at 20 °C. The magnesium is in excess.
 - (a) Fig. 6.1 shows the volume of hydrogen gas released as the reaction proceeds.

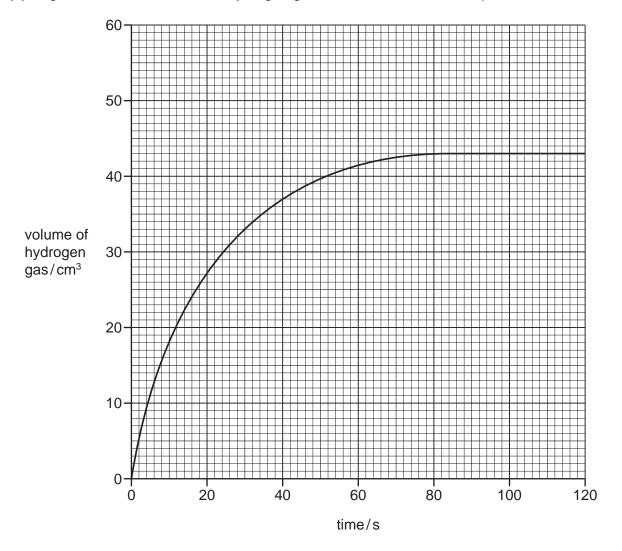


Fig. 6.1

(i) Deduce the volume of hydrogen gas released after 30 seconds.

volume of hydrogen = cm³ [1]

(ii) The student repeats the experiment using smaller pieces of magnesium. The mass of magnesium used remains the same. The magnesium is still in excess.

All other conditions stay the same.

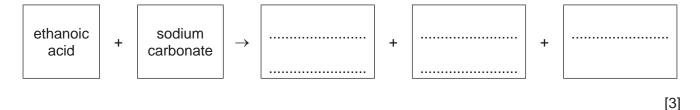
Draw a line on the grid in Fig. 6.1 to show the volume of hydrogen gas released when smaller pieces of magnesium are used. [2]

(b)	(i)	The student repeats the experiment at a higher temperature of 35 °C.												
		All other conditi	ons stay the same.											
		Describe how th	ne rate of reaction d	iffers	when a temperatu	ıre of	35°C is used.							
								[1]						
	(ii)	The student rep	eats the experimen	t usin	g a lower concent	ration	of acid.							
		All other conditi	ons stay the same.											
			ne rate of reaction d	iffers	when a lower con	centra	ation of acid is use	ed.						
(c)	Нус	drochloric acid re	acts with lithium hyd	droxid	le.									
	(i)	Complete the w	ord equation for this	s read	tion.									
	hy	drochloric acid +	lithium hydroxide	\rightarrow		+		[0]						
	<i>(</i> ***)							[2]						
	(ii)		e list the word that b			tion.								
		Draw a circle ar	ound your chosen a	answe	er.									
		addition	decomposition		neutralisation	0	kidation	[1]						
	(iii)	State the colour	of a solution of thy	molph	nthalein dissolved	in aqı	ieous sodium hyd	roxide.						
								[1]						
							[Total: 9]						

7 (a) Fig. 7.1 shows the displayed formula of fumaric acid.

Fig. 7.1

- **(b)** Fumaric acid can be oxidised to produce a compound with the molecular formula $C_4H_6O_6$. Complete Table 7.1 to calculate the relative molecular mass of $C_4H_6O_6$.


Table 7.1

atom	number of atoms	relative atomic mass	
carbon	4	12	4 × 12 = 48
hydrogen		1	
oxygen		16	

relative molecular mass = [2]

(c)	Ethanoic	acid is	a carbox	ylic	acid.
-----	-----------------	---------	----------	------	-------

Complete the word equation for the reaction of ethanoic acid with sodium carbonate.

- (d) Ethanoic acid can be produced by the oxidation of ethanol.
 - (i) State one use of ethanol.

 . [1]

(ii) Ethanol, C₂H₅OH, is an alcohol.

Choose from the list the general formula for the alcohol homologous series.

Draw a circle around your chosen answer.

$$C_nH_nOH$$
 $C_nH_{2n+1}OH$ $C_nH_{2n+2}OH$ $C_{2n}H_{2n}OH$ [1]

(iii) Ethanol can be manufactured by the addition of steam to ethene.

State two conditions for this reaction.

[Total: 13]

[2]

8	Zinc chloride is an ionic compound

(a)	lonic compounds are good electrical conductors when molten or in aqueous solution.						
Describe one other physical property of ionic compounds.							

(b) Complete Fig. 8.1 to show:

- the electronic configuration of a chloride ion
- the charge on the ion.

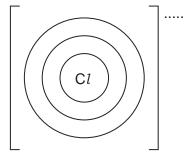


Fig. 8.1

[2]

(c) (i) Deduce the number of protons and neutrons in the zinc ion shown.

$$_{30}^{67}Zn^{2+}$$

(ii) Complete this sentence about positive ions.

Positive ions are known as[1]

(d)	Mol	ten zinc chloride is electrolysed using graphite electrodes.	
		te the names of the products at each electrode and give the observations at the posite strode.	ive
	pro	duct at the negative electrode	
	pro	duct at the positive electrode	
	obs	ervations at the positive electrode	
			 [3]
(e)	Gra	phite electrodes conduct electricity.	
	(i)	State one other property that the electrode should have.	
			[1]
	(ii)	Choose the correct statement about the structure and bonding in graphite.	
		Tick (✓) one box.	
		simple ionic	
		simple covalent	
		giant ionic	
		giant covalent	
			[1]
((iii)	State one use of graphite other than as an electrode.	
			[1]
		[Total:	12]

17

BLANK PAGE

18

BLANK PAGE

19

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

	_						_						c			_		_			_	nos
	=	2	He H	heliun 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypto 84	54	×e	xenor 131	86	R	radon	118	O	oganess
	=				6	ட	fluorine 19	17	Cl	chlorine 35.5	35	Ā	bromine 80	53	П	iodine 127	85	¥	astatine -	117	<u>⊼</u>	tennessine -
					80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъ	polonium –	116	^	livermorium -
	>				7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>.</u>	bismuth 209	115	Mc	moscovium -
	≥				9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium
	≡				5	Δ	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	l_	thallium 204	113	R	nihonium
								•			30	Zu	zinc 65	48	g	cadmium 112	80	Η̈́	mercury 201	112	S	copernicium
											29	C	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium -
Group											28	z	nickel 59	46	Pd	palladium 106	78	₹	platinum 195	110	Ds	darmstadtium -
											27	ဝိ	cobalt 59	45	R	rhodium 103	77	Ϊ́	iridium 192	109	Μţ	meitnerium -
		- ;	I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	Hs	hassium -
					•						25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
						loq	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	mic sym	name ative atomic ma				23	>	vanadium 51	41	g	niobium 93	73	<u>⊾</u>	tantalum 181	105	o O	dubnium
						ato	rela				22	F	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	쪼	rutherfordium -
											21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ва	barium 137	88	Ra	radium -
	_				3	:=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	22	S	caesium 133	87	Ļ.	francium
	Group	Group III IV V VI	Group III IV V VI VII	Group III IV V VI VII H H VII VII H H VII VII H H H H VII VII H H H H H H VII H H H H H H H H H	Stroup III IV V VI VII Hydrogen Hey The street Th	II	II	II	II	II	II	III	III	II	III IV V VI VIII V Cr Mnr Fe Co Ni Coul Cot Cot	1	III IV V VII VIII VIII V V	1	1	III IV V VI VIII IV V VI VIII IV V	II	II

Lu Lu	lutetium 175	103	ב	lawrencium -
° AY	ytterbium 173	102	å	nobelium –
m Tm	thulium 169	101	Md	mendelevium –
₈₈ Г	erbium 167	100	Fm	fermium -
67 Ho	holmium 165	66	Es	einsteinium –
® Dy	dysprosium 163	86	₽	californium —
es Tb	terbium 159	97	Ř	berkelium –
Gd Gd	gadolinium 157	96	Cm	curium —
e3 Eu	europium 152	92	Am	americium -
62 Sm	samarium 150	94	Pu	plutoni um —
e1 Pm	promethium —	93	d N	neptunium -
° PN	neodymium 144	92	\supset	uranium 238
59 P	praseodymium 141	91	Ра	protactinium 231
Ce Ce	cerium 140	06	H	thorium 232
57 La	lanthanum 139	88	Ac	actinium

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).